skip to main content


Search for: All records

Creators/Authors contains: "Hu, Yi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Careful placement of a distributed computational application within a target device cluster is critical for achieving low application completion time. The problem is challenging due to its NP-hardness and combinatorial nature. In recent years, learning-based approaches have been proposed to learn a placement policy that can be applied to unseen applications, motivated by the problem of placing a neural network across cloud servers. These approaches, however, generally assume the device cluster is fixed, which is not the case in mobile or edge computing settings, where heterogeneous devices move in and out of range for a particular application. To address the challenge of scaling to different-sized device clusters and adapting to the addition of new devices, we propose a new learning approach called GiPH, which learns policies that generalize to dynamic device clusters via 1) a novel graph representation gpNet that efficiently encodes the information needed for choosing a good placement, and 2) a scalable graph neural network (GNN) that learns a summary of the gpNet information. GiPH turns the placement problem into that of finding a sequence of placement improvements, learning a policy for selecting this sequence that scales to problems of arbitrary size. We evaluate GiPH with a wide range of task graphs and device clusters and show that our learned policy rapidly finds good placements for new problem instances. GiPH finds placements that achieve up to 30.5% better makespan, searching up to 3× faster than other search-based placement policies. 
    more » « less
  2. Free, publicly-accessible full text available May 1, 2024
  3. Abstract

    While genome sequencing has expanded our knowledge of symbiosis, role assignment within multi-species microbiomes remains challenging due to genomic redundancy and the uncertainties of in vivo impacts. We address such questions, here, for a specialized nitrogen (N) recycling microbiome of turtle ants, describing a new genus and species of gut symbiont—Ischyrobacter davidsoniae (Betaproteobacteria: Burkholderiales: Alcaligenaceae)—and its in vivo physiological context. A re-analysis of amplicon sequencing data, with precisely assigned Ischyrobacter reads, revealed a seemingly ubiquitous distribution across the turtle ant genus Cephalotes, suggesting ≥50 million years since domestication. Through new genome sequencing, we also show that divergent I. davidsoniae lineages are conserved in their uricolytic and urea-generating capacities. With phylogenetically refined definitions of Ischyrobacter and separately domesticated Burkholderiales symbionts, our FISH microscopy revealed a distinct niche for I. davidsoniae, with dense populations at the anterior ileum. Being positioned at the site of host N-waste delivery, in vivo metatranscriptomics and metabolomics further implicate I. davidsoniae within a symbiont-autonomous N-recycling pathway. While encoding much of this pathway, I. davidsoniae expressed only a subset of the requisite steps in mature adult workers, including the penultimate step deriving urea from allantoate. The remaining steps were expressed by other specialized gut symbionts. Collectively, this assemblage converts inosine, made from midgut symbionts, into urea and ammonia in the hindgut. With urea supporting host amino acid budgets and cuticle synthesis, and with the ancient nature of other active N-recyclers discovered here, I. davidsoniae emerges as a central player in a conserved and impactful, multipartite symbiosis.

     
    more » « less
  4. ABSTRACT

    The radiance of sky brightness differs principally with wavelength passband. Atmospheric scattering of sunlight causes the radiation in the near-infrared band. The Antarctic is a singular area of the planet, marked by an unparalleled climate and geographical conditions, including the coldest temperatures and driest climate on Earth, which leads it to be the best candidate site for observing in infrared bands. At present, there are still no measurements of night-sky brightness at DOME A. We have developed the Near-Infrared Sky Brightness Monitor (NISBM) in the J, H, and Ks bands for measurements at DOME A. The instruments were installed at DOME A in 2019 and early results of NIR sky brightness from 2019 January–April have been obtained. The variation of sky background brightness with solar elevation and scanning angle is analysed. The zenith sky flux intensity for the early night at DOME A in the J band is in the 600–1100 μJy arcsec−2 range, that in the H band is between 1100 and 2600 μJy arcsec−2, and that in the Ks band is in the range ∼200–900 μJy arcsec−2. This result shows that the sky brightness in J and H bands is close to that of Ali in China and Mauna Kea in the USA. The sky brightness in the Ks band is much better than that in Ali, China and Mauna Kea, USA. This shows that, from our early results, DOME A is a good site for astronomical observation in the Ks band.

     
    more » « less
  5. ABSTRACT

    AST3-2 is the second of the three Antarctic Survey Telescopes, aimed at wide-field time-domain optical astronomy. It is located at Dome A, Antarctica, which is by many measures the best optical astronomy site on the Earth’s surface. Here we present the data from the AST3-2 automatic survey in 2016 and the photometry results. The median 5σ limiting magnitude in i-band is 17.8 mag and the light-curve precision is 4 mmag for bright stars. The data release includes photometry for over 7 million stars, from which over 3500 variable stars were detected, with 70 of them newly discovered. We classify these new variables into different types by combining their light-curve features with stellar properties from surveys such as StarHorse.

     
    more » « less
  6. Abstract

    Gut bacterial symbionts can support animal nutrition by facilitating digestion and providing valuable metabolites. However, changes in symbiotic roles between immature and adult stages are not well documented, especially in ants. Here, we explored the metabolic capabilities of microbiomes sampled from herbivorous turtle ant (Cephalotes sp.) larvae and adult workers through (meta)genomic screening and in vitro metabolic assays. We reveal that larval guts harbor bacterial symbionts with impressive metabolic capabilities, including catabolism of plant and fungal recalcitrant dietary fibers and energy-generating fermentation. Additionally, several members of the specialized adult gut microbiome, sampled downstream of an anatomical barrier that dams large food particles, show a conserved potential to depolymerize many dietary fibers. Symbionts from both life stages have the genomic capacity to recycle nitrogen and synthesize amino acids and B-vitamins. With help of their gut symbionts, including several bacteria likely acquired from the environment, turtle ant larvae may aid colony digestion and contribute to colony-wide nitrogen, B-vitamin and energy budgets. In addition, the conserved nature of the digestive capacities among adult-associated symbionts suggests that nutritional ecology of turtle ant colonies has long been shaped by specialized, behaviorally-transferred gut bacteria with over 45 million years of residency.

     
    more » « less